

Modeling Edge Localized Modes

Nate Ferraro

PPPL/UMD Theory/Stellarator Mini-Meeting Jan. 23, 2019

ELMs Represent Major Challenge to Successful Tokamak Reactor

- Edge Localized Modes (ELMs)
 - Intermittent bursts of heat from plasma edge
 - Present in most H-mode scenarios
 - Understood to be ideal-MHD instabilities of the plasma edge (peeling-ballooning modes)
 - Expected to melt / erode divertor in ITER if not mitigated
- "ITER and later reactors will require very large reductions in the magnitude and frequency of both ELMs and major disruptions based on extrapolations from current experiments"
 - http://science.energy.gov/~/media/fes/pdf/programnews/Transients_Report.pdf

RMPs are a Primary Strategy for ELM Mitigation

- ELMs can be completely suppressed by applying nonaxisymmetric Resonant Magnetic Perturbations (RMPs)
- Works on some tokamaks
 - Works on DIII-D, AUG, KSTAR
 - Doesn't work on NSTX, MAST, JET
- Only works for certain conditions
 - q_{95} windows, collisionality/density thresholds
- Only predictive model of ELM suppression is 10 years old and does not consider plasma response: Fenstermacher et al, Phys. Plasmas 15, 056122 (2008)
 - We know this is not very accurate!
- We can't predict when RMP ELM suppression will work
 - This presents big risks for ITER!

- EPED Model of pedestal structure:
 - Gradient determined by local KBM stability
 - Width grows until global P-B stability threshold is reached (ELM)

- EPED Model of pedestal structure:
 - Gradient determined by local KBM stability
 - Width grows until global P-B stability threshold is reached (ELM)

- EPED Model of pedestal structure:
 - Gradient determined by local KBM stability
 - Width grows until global P-B stability threshold is reached (ELM)

- EPED Model of pedestal structure:
 - Gradient determined by local KBM stability
 - Width grows until global P-B stability threshold is reached (ELM)
- Implies model of ELM suppression:
 - Something stops widening of pedestal before threshold
 - Requires enhanced transport at $\Psi \approx 96-97\%$

- EPED Model of pedestal structure:
 - Gradient determined by local KBM stability
 - Width grows until global P-B stability threshold is reached (ELM)
- Implies model of ELM suppression:
 - Something stops widening of pedestal before threshold
 - Requires enhanced transport at $\Psi \approx 96-97\%$

- Predictive modeling needs model of RMP effect on transport
 - Enhanced neoclassical transport?
 - Turbulent transport (KBM)?
 - Magnetic islands / stochasticity → parallel transport?

Significant Enhancement of Tearing Response Calculated in ELM-Suppressed State

- Measurements show change of rotation and pressure profiles in ELM-suppressed state
 - c.f. Nazikian, et al. PRL **114**, 105002 (2015)
- Modeling shows enhanced tearing near pedestal top in ELM-suppressed state
 - $-\omega_e = 0$ moves outward
 - M3D-C1 shows enhanced tearing response where ω_e is small
- Still, implied islands would be small; is this enough to stop pedestal growth?
 - Need to quantify this!

New Project Will Combine 3D Tokamak Equilibrium & Transport Calculations to Understand ELM Suppression

- 3D equilibria can be calculated with M3D-C1
 - Plasma response strongly affects magnetic geometry
 - Allows islands, stochasticity
 - Two-fluid effects are important in edge due to strong diamagnetic flows
- Effect on various types of transport can then be calculated
 - Interfaces have already been developed between M3D-C1 and XGC, GTC, SPIRAL, TRIP3D, EMC3-EIRENE, and 3D NEO
- Goal is to analyze broad set of data
 - Lots of noise introduced by individual EFIT reconstructions; need statistics
 - DIII-D, NSTX(-U), MAST(-U), KSTAR, AUG(?), EAST(?)

Summary

- ITER is counting on RMP ELM suppression but we don't know under what conditions it will work
- Pedestal models suggest ELM suppression might be due to enhanced transport at top of pedestal
- New project is underway to evaluate various transport channels given high-fidelity 3D tokamak equilibrium calculations
 - Lots of crosscutting issues with stellarators here!
- Ultimately, we seek a validated, predictive model of RMP ELM suppression to gain confidence that it will work in reactor-relevant scenarios

Extra Slides

M3D-C1 Is Parallel, Finite-Element Code Using Unstructured, Multi-Region Mesh

- Triangular C1 finite elements on unstructured mesh
- 3 regions inside domain:
 - XMHD (Extended MHD)
 - RW ($\mathbf{E} = \eta_W \mathbf{J}$)
 - Vacuum ($\mathbf{J} = 0$)
- Boundary conditions:
 - v, p, n set at inner wall
 - B set at outer (superconducting) wall

- There are no boundary conditions on B or J at the resistive wall
 - Current can flow into and through the resistive wall

Wall

Two-Fluid Extended MHD Model

$$\frac{\partial n}{\partial t} + \nabla \cdot (n_i \mathbf{v}) = 0$$

$$n_i m_i \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_i$$

$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \Gamma p \nabla \cdot \mathbf{v} = -\frac{1}{n_e e} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n_e}{n_e} - \nabla p_e \right) - (\Gamma - 1) \nabla \cdot \mathbf{q}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e)$$

$$\Pi_{i} = -\mu \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^{T} \right] + \Pi_{i}^{gv} + \Pi_{i}^{\parallel}$$

$$\mathbf{q} = -\kappa \nabla T_{i} - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla T_{e}$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

$$\Gamma = 5/3$$

$$n_{e} = Z_{i} n_{i}$$

- (R, φ, Z) coordinates \rightarrow no coordinate singularities in plasma
- Boundary conditions:
 - Linear, time-independent (plasma response) single n
 - Linear, time-dependent (linear stability) single n
 - Nonlinear, time-dependent (nonlinear evolution) toroidal finite elements

Linear MHD Modeling Shows "Kinking," "Screening," and "Tearing" in Response

- Kinking: amplification of non-resonant field components
 - Makes distortion of surfaces larger than implied by applied fields
- **Screening**: reduction of resonant field components
 - Makes islands smaller than implied by applied fields
- **Tearing:** when plasma response fails to screen resonant components
 - Only possible in non-ideal response

Experiments Clearly See "Kink" Response

- Including plasma response is necessary to accurately model edge measurements
 - $-T_e$, n_e profiles in edge strongly affected by "kink" response
 - Linear modeling is successful in reproducing measured profiles;
 magnetics data

Modeled Frame₆₀-Frame₀ (au NM Ferraro, et al. Nucl. Fusion 53. M3D-C1 073042 (2013) Model ◆ TS t=4040 (+4 kAt) △ TS t=4140 (-4 kAt) T_e (eV)

JD King, et al. Phys. Plasmas 22, 072501 (2015) NM Ferraro - PPPL/UMD Stellarator Mini-Conference SXR

Experiments See Hints of Island Formation

- Measuring small islands (~1 cm) is very difficult experimentally
- In transition into ELM-suppressed state, a bifurcation similar to the formation of a locked island is observed
 - Temperature flattening near top of pedestal
 - Non-rotating magnetic signal
- No island is seen directly. Modeling is still needed to understand results
 - Truly predicting island formation requires nonlinear modeling

